Barnes-Hut implementation of t-Distributed Stochastic Neighbor Embedding (t-SNE)
Source:R/CoreMethods.R
RunTSNE.Rd
Run nonlinear dimensionality reduction using t-SNE with the PCA-transformed consensus matrix as input.
Usage
RunTSNE.SingleCellExperiment(
object,
dims,
dimred.type,
perplexity,
dimred.name,
...
)
# S4 method for class 'SingleCellExperiment'
RunTSNE(
object,
dims = NULL,
dimred.type = "PCA",
perplexity = 30,
dimred.name = "TSNE",
...
)
Arguments
- object
Object of
SingleCellExperiment
class.- dims
Dimensions to select from
dimred.type
. By defaultNULL
, i.e., all the dimensions are selected. Provide a numeric vector to select a specific range, e.g.,dims = 1:10
to select the first 10 dimensions.- dimred.type
Dimensional reduction type to use. By default
"PCA"
.- perplexity
Perplexity of t-SNE.
- dimred.name
Dimensional reduction name given to the returned t-SNE. By default
"TSNE"
.- ...
Parameters to be passed to the
Rtsne
function. The parameters given should match the parameters accepted by theRtsne
function. Check possible parameters with?Rtsne::Rtsne
.
Examples
# Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))
# Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(assays = list(logcounts = t(iris[,1:4])),
colData = DataFrame("Species" = iris$Species,
"Batch" = batch))
colnames(sce) <- paste0("samp", 1:ncol(sce))
# Run PCA
set.seed(125) # to ensure reproducibility for the default 'irlba' method
sce <- RunPCA(object = sce, assay.name = "logcounts",
pca.method = "stats", p = nrow(sce))
# Run t-SNE
set.seed(125) # to ensure reproducibility for the default 'irlba' method
sce <- RunTSNE(object = sce, dimred.type = "PCA", check_duplicates = FALSE)
# Plot result
cowplot::plot_grid(PlotDimRed(object = sce, color.by = "Batch",
legend.nrow = 1),
PlotDimRed(object = sce, color.by = "Species",
legend.nrow = 1), ncol = 2)