Get feature coefficients from ICP models.
Usage
GetFeatureCoefficients.SingleCellExperiment(
object,
icp.run = NULL,
icp.round = NULL
)
# S4 method for class 'SingleCellExperiment'
GetFeatureCoefficients(object, icp.run = NULL, icp.round = NULL)
Arguments
- object
An object of
SingleCellExperiment
class with ICP cell cluster probability tables saved inmetadata(object)$coralysis$joint.probability
. After runningRunParallelDivisiveICP
.- icp.run
ICP run(s) to retrieve from
metadata(object)$coralysis$joint.probability
. By defaultNULL
, i.e., all are retrieved. Specify a numeric vector to retrieve a specific set of tables.- icp.round
ICP round(s) to retrieve from
metadata(object)$coralysis$joint.probability
. By defaultNULL
, i.e., all are retrieved.
Examples
if (FALSE) { # \dontrun{
# Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))
# Import data from Zenodo
data.url <- "https://zenodo.org/records/14845751/files/pbmc_10Xassays.rds?download=1"
sce <- readRDS(file = url(data.url))
# Multi-level integration (just for highlighting purposes; use default parameters)
set.seed(123)
sce <- RunParallelDivisiveICP(object = sce, batch.label = "batch",
k = 4, L = 10, C = 1, d = 0.5,
train.with.bnn = FALSE, use.cluster.seed = FALSE,
build.train.set = FALSE, ari.cutoff = 0.1,
threads = 2)
# GetFeatureCoefficients
gene_coefficients_icp_2_4 <- GetFeatureCoefficients(object = sce,
icp.run = 2, icp.round = 4)
head(gene_coefficients_icp_2_4$icp_8)
} # }