Heatmap visualization of the expression of features by clusters
Source:R/VizMethods.R
HeatmapFeatures.Rd
The HeatmapFeatures
function draws a heatmap of features
by cluster identity.
Usage
HeatmapFeatures.SingleCellExperiment(
object,
clustering.label,
features,
use.color,
seed.color,
...
)
# S4 method for class 'SingleCellExperiment'
HeatmapFeatures(
object,
clustering.label,
features,
use.color = NULL,
seed.color = 123,
...
)
Arguments
- object
of
SingleCellExperiment
class- clustering.label
A variable name (of class
character
) available in the cell metadatacolData(object)
with the clustering labels (character
orfactor
) to use.- features
Feature names to plot by cluster (
character
) matchingrow.names(object)
.- use.color
Character specifying the colors for the clusters. By default
NULL
, i.e., colors are randomly chosen based on the seed given atseed.color
. It is overwritten in case the argumentannotation_colors
is provided.- seed.color
Seed to randomly select colors for the clusters. By default
123
. It is overwritten in case the argumentannotation_colors
is provided.- ...
Parameters to pass to
pheatmap::pheatmap
function.
Examples
# Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))
# Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(assays = list(logcounts = t(iris[,1:4])),
colData = DataFrame("Species" = iris$Species,
"Batch" = batch))
colnames(sce) <- paste0("samp", 1:ncol(sce))
# Plot features by clustering, i.e., grouping variable
# without scaling rows (using 'logcounts' expression):
HeatmapFeatures(object = sce, clustering.label = "Species",
features = row.names(sce)[1:4])
# scaling rows:
HeatmapFeatures(object = sce, clustering.label = "Species",
features = row.names(sce)[1:4], scale = "row") # scale