Skip to contents

The function aggregates feature expression by cell clusters, per batch if provided.

Usage

AggregateDataByBatch.SingleCellExperiment(object, batch.label, nhvg, p, ...)

# S4 method for class 'SingleCellExperiment'
AggregateDataByBatch(object, batch.label, nhvg = 2000L, p = 30L, ...)

Arguments

object

An object of SingleCellExperiment class.

batch.label

Cluster identities vector corresponding to the cells in mtx.

nhvg

Integer of the number of highly variable features to select. By default 2000.

p

Integer. By default 30.

...

Parameters to be passed to ClusterCells() function.

Value

A SingleCellExperiment object with feature expression aggregated by clusters.

Examples

if (FALSE) { # \dontrun{
# Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

# Import data from Zenodo
data.url <- "https://zenodo.org/records/14845751/files/pbmc_10Xassays.rds?download=1"
sce <- readRDS(file = url(data.url))

# Run with a batch
set.seed(1204)
sce <- AggregateDataByBatch(object = sce, batch.label = "batch")
logcounts(sce)[1:10,1:10]
head(metadata(sce)$clusters)

# Run without a batch
set.seed(1204)
sce <- AggregateDataByBatch(object = sce, batch.label = NULL)
logcounts(sce)[1:10,1:10]
head(metadata(sce)$clusters)
} # }