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Outline

* Integration: methods & benchmarks

* Strengths & weaknesses of the different methods

* Strategies to assess integration accuracy

* Integration: de novo versus reference-based
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What is integration!?

* |dentification of shared cell types/states across heterogeneous scRNA-seq datasets
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How do we know if integration is required or not!

* Three main approaches (can be combined):
- Dimensional reduction techniques
- Automatic cell annotation
- Independent sample analysis: clustering — cluster markers — annotation

- (cluster comparison between samples)
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Horizontal integration (features as anchors)

Overview of integration strategies - ]
; gl :
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Computational principles and challenges in :
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Cells Diagonal integration (no anchors)
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www.scrna-tools.org (20/06/24)

Overview of integration methods

Integration
Percent: 15.9

Cate:
Count: 285
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http://www.scrna-tools.org/

Overview of integration methods

Tools

View entries for individual tools

Sorting & Filters

Sort by

Citations

Filter by category

Select multiple categories and click FILTER below

CEmCyeE
Classification
Clustering
Differential Expression
Dimensionality Reduction
Gene Filtering
Gene Networks
Gene Sets
Haplotypes
Immune
Imputation
Integration

FILTER RESET

i,

. Seurat

2. Harmony

3. scran

4. scvitools

o

batchelor

6. RacelD

7. MIMOSCA

8. bsegsc

9. MOFA

10. LIGER

11. scanorama

12. scMC

13. bbknn

www.scrna-tools.org (20/06/24)

CRAN [S.10 }f do ds | 65K/month

CRAN |1:2.0 6749/month

pypi package |12

[ cran 1035 downloads

pypi package 'L2'f downloads/month 99

CRAN [20C1N) downloads | 1002/month

pypi package ‘174 [ down

pypi package ‘160 downloads/month ' sk
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http://www.scrna-tools.org/

Seurat
Comprehensive Integration of Single-Cell Data

. . . . Tim Stuart,”* Andrew Butler,” %% Paul Hoffman,' Christoph Hafemeister,' Efthymia Papalexi,’* William M. Mauck lll," 2
 Shared nearest neighbors in the low dimensional Yuhan Hao, 2 Marlon Stoeckius,® Peter Smibert, and Rahul Satija’ 25"
'New York Genome Center, New York, NY, USA
2Center for Genomics and Systems Biology, New York University, New York, NY, USA
3Technology Innovation Lab, New York Genome Center, New York, NY, USA
S Pac S 4These authors contributed equally
SLead Contact
*Correspondence: rsatija@nygenome.org
https://doi.org/10.1016/j.cell.2019.05.031

* Dimensional reductions: Canonical Correlation A B c

Analysis (CCA) or Reciprocal PCA (RPCA) P
Reference
* Integration or reference-mapping/transfer learning Canonical Correlation | “44i¢ Identify
Analysis ﬁ ‘anchors’
R
L2-norm
Query
Query
D High-scoring correspondence Low-scoring correspondence E
Anchors are consistent with local neighborhoods Anchors are inconsistent with local neighborhoods .. .. Cell type . Rétetences . Query
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https://satijalab.org/seurat
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nature methods ARTICLES

https://doi.org/10.1038/541592-019-0619-0

Harmony
Fast, sensitive and accurate integration
of single-cell data with Harmony

llya Korsunsky ©'234 Nghia Millard*>*#, Jean Fan®%, Kamil Slowikowski'>3*,
Fan Zhang @234, Kevin Wei?, Yuriy Baglaenko ©'%34, Michael Brenner?, Po-ru Loh©'*# and
Soumya Raychaudhuri@2346*

Dataset | Cell type
[ X X " [ + / Iterate until convergence \
2 Clus, ° C/USIS/* ¢ Clusfef d C/u%
,\Q( 2 - ” [ \@‘ 2 %] \Q( 2 \6‘ 2 “ ”t &
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& ﬁ ® o é / pewy,
Soft assign cells to Get cluster centroids Get dataset correction Move cells based on
clusters, favoring mixed for each dataset factors for each cluster soft cluster membership

dataset representation

» Approximates dataset-specific cluster centroids to global centroids in the PCA space

https://portals.broadinstitute.org/harmony
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nature
biotechnology

fastMNN

a C . . .
@z Batch effects in single-cell RNA-sequencing data are
i ¢ ot corrected by matching mutual nearest neighbors
mw
i ﬁy Laleh Haghverdi!2, Aaron T L Lun*®, Michael D Morgan*® & John C Marioni!-**

* Correction vectors applied between mutual nearest

neighbors pairs

Nearest
in batch 2

Nearest
in batch 1

https://bioconductor.org/packages/devel/bioc/html/batchelor.html
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scVI

Raw expression
data + batch ID

NN1

Variational posterior
q(zn' In[ Xn’ sn)

NN2
N

NN3
N

NN4

~—

Nonlinear
mapping

nature|methods il

Deep generative modeling for single-cell

transcriptomics

RomainLopez', Jeffrey Regier®', Michael B. Cole?, Michaell. Jordan'® and Nir Yosef ©'45*

Generative model
p(X,,l zn' Sn' In)

|| Expected
counts

|
-

Size factor
Mean Cell-specific
/ P!
' !
S.d.
NN5
2 -
(™ Latent ) . 1 frequency
space : — fw(zn’ sn)
Mean
NN6
@z ()
Expected
S.d. dropout
s,
) . L —/ fh(z"’ Sn)
I )
Variational . Nonlinear G'enferatllve
e Sampling ) distribution
distribution mapping
parameters

|
| Clustering
—)) Visualization

Batch removal

|
|
|
|
I
|
|
|
| Imputation
L

Differential
expression

* “stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions

that underlie observed expression values, while accounting for batch effects”
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ANALYSIS
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blOtCCh.ﬂOlOgy https:/doi.org/101038/541587-019-0113-3

Scanorama S , ,
Efficient integration of heterogeneous single-cell

transcriptomes using Scanorama

Brian Hie®', Bryan Bryson©2* and Bonnie Berger®'3*

Collect scRNA-seq Find nearest neighbors Keep mutually Create scRNA-seq
experiments among all other data sets linked cells panorama

*  “Mutually linked cells form matches that can be leveraged to correct for batch effects and merge experiments together, whereby the datasets forming

connected components on the basis of these matches become a scRNA-seq ‘panorama’”

https://github.com/brianhie/scanorama
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nature communications 8

S e m i - S u P e rVi S e d i n teg rati O n Article https://doi.org/10.1038/s41467-024-45240-z
Semi-supervised integration of single-cell
transcriptomics data
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HVG -

1 ssSTACAS® £ [ ] [ 1[ ]
2 SCANVI* & we - ][ ][ ]
* 523 Il

8 SSSTACAS l&:‘ He * j ‘ ‘ 1 :l Received: 25 July 2023 Massimo Andreatta® 22, Léonard Hérault ® %3, Paul Gueguen ® %3,
4 STACAS E HVG :] % ;} Roceed b sBiiA David Gfeller ® %3, Ariel J. Berenstein ® % & Santiago J. Carmona ® '3
5 STACAS : HVG + 1 :
6 fastMNN # we - | O = |[ ]
7 Scanorama ]ﬁ. HVG + D 1
8 Seurat v4 RPCA  nwe + [ [ N N
9 scGen* B v + BB Collection Pairwise anchors
10 Seurat v4 RPCA  we - [ [ B of datasels a
11 Harmony ]i HVG - D . |:| l:l
12 sV Ii’: HVG _ . . l:| x X score = f(SNN_score, rPCA_distance)
13 Scanorama ]é. HVG - . . - [T ))(( X L2 o
14 scGen* B v - DB D Anchor rejection by
15 Harmony & He o+ . D . o o label mismatch Integrated data
16 ComBat B e o+ . - - . 08 i & Apply correction a
17 fastMNN s + [HIH BB x ’; il vesiore o:X :
18 Seurat v4 CCA ]ﬁ HVG - ﬁ . . . . > 7 _> X
19 Scanorama E HVG - - . - \:l ’ celltype partial labels 0 ..
20  ComBat B oawwe - BB E B annotation |5 89| (prior-knowledge)  Rej 200 .

J Celltype A “
21 Seurat v4 CCA  we + [ | W B Czlltig: B guide tree
22 Scanorama @ HVG + . . - . unknown
23 Unintegrated H o~ - B B R T

Output Scaling Ranking

E gene + :scaled 1
]_";E aiitied = :unscaled

23

https://github.com/carmonalab/STACAS
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Integration scRNA-seq benchmarks

Tran et al. Genome Biology (2020) 21:12
https://doi.org/10.1186/s13059-019-1850-9

Genome Biology

A benchmark of batch-effect correction
methods for single-cell RNA sequencing

data

®

Check for
updates

Hoa Thi Nhu Tran', Kok Siong Ang’, Marion Chevrier', Xiaomeng Zhang’, Nicole Yee Shin Lee, Michelle Goh and

Jinmiao Chen @

A

Seurat 2
Seurat 3
Harmony
fastMNN
MNN Correct
ComBat
Limma
scGen
Scanorama
MMD-ResNet
ZINB-WaVE
scMerge
LIGER

Batch

Cell type

Number of | Total cell
Batch effect correction i Detmact e batches | number | TECHnOlogies
corrected
Diagnostic plots data 1 Human Dendritic Cells 2 576 Smart-Seq2
e Microwell-Seq
\ 2 Mouse Cell Atlas 2 6,954
Smart-Seq2
Benchmark 3 Simulation Refer to Simulation table
inDrop
Rl LISI
ASW ARI KBET DEG
CEL-Seq2
Before After 4 Human Pancreas 5 14,767 | Smart-Seq2
LISI SMARTer
o SMARTer
R /\\ - 10x3
o 5 Human Peripheral Blood Mc Cell 2 15,476
10x 5'
=S o 6 Cell line 3 9,530 10x
am P
AR KBET 7 Mouse Retina 2 71,638 Drop-seq
. ——— Drop-seq
e = 8 Mouse Brain 2 833,206
S g s SPLiT-seq
9 Human Cell Atlas 2 621,466 10x
’ MARS-seq
e 3 10 Mouse Haematopoietic Stem and Progenitor Cells 2 4,649
" o Camt —— s Smart-Seq2

Abstract

Background: Large-scale single-cell transcriptomic datasets generated using different technologies contain batch-
specific systematic variations that present a challenge to batch-effect removal and data integration. With continued
growth expected in scRNA-seq data, achieving effective batch integration with available computational resources is
crucial. Here, we perform an in-depth benchmark study on available batch correction methods to determine the
most suitable method for batch-effect removal.

Results: We compare 14 methods in terms of computational runtime, the ability to handle large datasets, and
batch-effect correction efficacy while preserving cell type purity. Five scenarios are designed for the study: identical
cell types with different technologies, non-identical cell types, multiple batches, big data, and simulated data.
Performance is evaluated using four benchmarking metrics including kBET, LISI, ASW, and ARI. We also investigate
the use of batch-corrected data to study differential gene expression.

Conclusion: Based on our results, Harmony, LIGER, and Seurat 3 are the recommended methods for batch
integration. Due to its significantly shorter runtime, Harmony is recommended as the first method to try, with the
other methods as viable alternatives.

Keywords: Single-cell RNA-seq, Batch correction, Batch effect, Integration, Differential gene expression
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Patient

Integration scRNA-seq benchmarks

Uncorrected STACAS
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A comparison of data integration methods for single-cell RNA
sequencing of cancer samples

Laura M. Richards'?, Mazdak Riverin?, Suluxan Mohanraj’>, Shamini Ayyadhury>?, Danielle C.
Croucher'?, J. Javier Diaz-Mejia®, Fiona J. Coutinho’, Peter B. Dirks*>¢, Trevor J. Pugh'?"-*

Tumours are routinely profiled with single-cell RNA sequencing (scRNA-seq) to characterize
their diverse cellular ecosystems of malignant, immune, and stromal cell types. When
combining data from multiple samples or studies, batch-specific technical variation can confound
biological signals. However, scRNA-seq batch integration methods are often not designed for, or
benchmarked, on datasets containing cancer cells. Here, we compare 5 data integration tools
applied to 171,206 cells from 5 tumour scRNA-seq datasets. Based on our results, STACAS and
fastMNN are the most suitable methods for integrating tumour datasets, demonstrating robust

batch effect correction while preserving relevant biological variability in the malignant

compartment. This comparison provides a framework for evaluating how well single-cell

integration methods correct for technical variability while preserving biological heterogeneity of
malignant and non-malignant cell populations.
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Integration scRNA-seq benchmarks

13 integration tasks
cells

Preprocessing

3

HVG (yes/no)
scaling (yes/no)

~

Genes/features

Scalability

=4

Dataset size "

»
>

Time/memory

Usability

nature methods

OPEN

ANALYSIS

https://doi.org/10.1038/541592-021-01336-8

") Check for updakesj

Benchmarking atlas-level data integration in

single-cell genomics

Malte D. Luecken®', M. Biittner @', K. Chaichoompu @', A. Danese', M. Interlandi?, M. F. Mueller’,
D. C. Strobl', L. Zappia™?, M. Dugas*, M. Colomé-Tatché'>¢* and Fabian J. Theis® 358
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Conclusions: strengths & weaknesses of the different methods
* Integration: trade-off between biological signal preservation and batch correction

* Inconsistent results across benchmarks: different methods, integration tasks, performance metrics

Benchmarks: showed that performance of integration is inherently dependent on the complexity of the

integration task, highlighting that there is no single method fitting all the tasks

Methods more suitable to correct strong batch effects (prioritize batch correction): Seurat CCA,

Harmony and fastMNN

Methods more suitable to correct mild to moderate batch effects (prioritize biological conservation):

Seurat RPCA, Scanorama and scVI
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Strategies to assess integration accuracy

* Two types of assessment:
- qualitative (dimensional reduction visualizations)

- quantitative (objective metrics)
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Measuring integration performance (quantitative): scib package

14 accuracy metrics

removal batch effect ,__,/\_, conservation of biological variance

- KBET - graph cLISI
- KNN - AR
cell label dependent label conservation
- ASW - NMI
cell label independent label-free conservation
- graph iLISI - cell-type ASW
- PCA regression - isolated label scores (n=2)

- cell-cycle variance conservation

- overlaps of HVG per batch before
and after integration

- conservation trajectories

Input: integrated joint embedding or feature corr. matrix

Paper: https://www.nature.com/articles/s41592-021-01336-8

scIB github repo: https://github.com/theislab/scib
scib-pipeline github repo: https://github.com/theislab/scib-pipeline
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https://www.nature.com/articles/s41592-021-01336-8

Published Online: 23 March, 2021 | Supp Info: http://doi.org/10.26508/Isa.202001004

Downloaded from life-science-alliance.org on 20 June, 2024 R
L
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Measuring integration performance i S Life Science Alliance
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CellMixS: quantifying and visualizing batch effects in
single-cell RNA-seq data

Almut Liitge™*®, Joanna Zyprych-Walczak®, Urszula Brykczynska Kunzmann®, Helena L Crowell™, Daniela Calini®,
Dheeraj Malhotra®®, Charlotte Soneson®“®, Mark D Robinson™@

Table 1. Batch mixing metrics: short summaries of metrics included in the benchmark.

Metric Level Basis Short description Interpretation

- P- x
Test for whether distance distributions from a Vathe- Probabillity td ohseive as large

Cell-specific Mixing Score (cms) Cell knn, pca i differences in distance distributions assuming
neighbourhood are batch specific .
the same underlying distribution
Local Inverse Simpson Index (lisi))  Cell knn |nverse Of, LD Suly oty pronanites Effective number of batches in neighbourhood
within weighted knn
Sum of the products of the batch probabilities Randomness in the data according to the batch
Entropy Cell knn : . :
and their log within each cell’s knn variable
o0 . Median position of the fifth cell from each Number of cells within knn until each batch is
Mixing metric (mm) Cell knn : S
batch within its knn represented by five cells
Griph connectivity (exanh) Cell knn- Fraction of directly connected cells within cell  Proportion of non-distorted cell type
P vity {grap type graph type graphs relationships
’ g P P : I
k-nearest neighbour Batch effect Cell Test for equal batch proportions within a .value Pro‘babnhty D obserye as large
knn : differences in batch proportions assuming the
test (kBet) type random cell's knn .
same underlying proportions
- A f 'I' t W .
Average silhouette width (asw) iy pca NOREE: TERia M INCAN W AN -tetwean Indication of how well clusters are separated

type batch-cluster distances for each cell type

Correlation of the batch variable with
Global pca principal components weighted by their Proportion of variance attributed to batch
variance attributes

Principal component regression
(per)

https://github.com/almutlue/CellMix$
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Integration (de novo) versus reference-mapping

* Integration (de novo): integration — clustering — cluster markers — annotation

Batch data sets @

Cell types

?8335)
oOA %
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Integration (de novo) versus reference-mapping

* Reference-mapping: projecting & transferring labels
from a previously annotated reference to a new query

data set

* Application: experiments generating single-cell
transcriptomic data with well-known identities for

which are references available

o
&f Medical Bioinformatics Centre B SRR AN\ ree

Reference Mapping

/
Map query '
against
reference \

\\Transfer

\
I labels
\

|
1
|
I
I

Project query
onto the Reference
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Reference-mapping

ANALYSIS

nature
biotechnology

https://doi.org/10.1038/541587-021-01001-7

Cell

M) Check for updates |

OPEN
Mapping single-cell data to reference atlases by

Comprehensive Integration of Single-Cell Data transfer learning

Tim Stuart,”* Andrew Butler,” %* Paul Hoffman,' Christoph Hafemeister," Efthymia Papalexi,’* William M. Mauck I, 2
Yuhan Hao,2 Marlon Stoeckius,® Peter Smibert,* and Rahul Satija’ 25"

'New York Genome Center, New York, NY, USA

2Center for Genomics and Systems Biology, New York University, New York, NY, USA

3Technology Innovation Lab, New York Genome Center, New York, NY, USA

a

4These authors contributed equally
SLead Contact )
*Correspondence: rsatija@nygenome.org s;zb"f reference datasets x N o
https://doi.org/10.1016/j.cell.2019.05.031 2 Pre-training of

reference models, I ..........

---------------- »> :
2 |:| Model repository

Reference

Mohammad Lotfollahi©"2, Mohsen Naghipourfar @', Malte D. Luecken ©', Matin Khajavi',
Maren Bittner ©', Marco Wagenstetter', 2iga Avsec©3, Adam Gayoso®*, Nir Yosef ®4567,
Marta Interlandi®, Sergei Rybakov'®, Alexander V. Misharin©' and Fabian J. Theis ©@">°=

Reference labels

Download
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Upload
model

Reference

Identify
‘anchors’

Canonical Correlation @ ‘ﬁ

Analysis

L2-norm
Architectural
surgery

Query Adding additional
query adaptors

Query

Study

e CelSeq

o CelSeq2
Fluidigm C1
InDrop

e SS2

Low-scoring correspondence
Anchors are inconsistent with local neighborhoods

Reference ;

D High-scoring correspondence
Anchors are consistent with local neighborhoods

o

. Reference . Query
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Additional resources about integration

* Analysis of single cell RNA-seq data Sanger course:

https://www.singlecellcourse.org/scrna-seq-dataset-integration.html

* Single-cell best practices website:

https://www.sc-best-practices.org/cellular_structure/integration.html
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sclB: kBET, kNN & ASW (dependent on cell label identity)

KBET (k-nearest-neighbor batch effect test):

- compares the batch label distribution of a local neighborhood of a (kNN) graph for a subset of a given cell label against the global
neighborhood — Pearson’s Chi-squared test. Null hypothesis is that the distributions are similar, i.e., batches are well mixed. K-BET result is the
average rejection rate. Lower value means no/weak batch effect.

KNN (k-nearest-neighbor graph connectivity):

- measures if all the cells from a given cell identity label are all connected (1).
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ASW (average silhouette width):
- measures the within- and between-cluster distances (to the closest cluster). The average of all widths corresponds to the ASW. The ASW
ranges between -1 - 0 - 1 (misclassification - overlapping clusters - well-separated dense clusters). Computed on the integrated embedding (or

PCA). Used for assessing batch effects as well as cell label conservation (some differences).

Paper: https://www.nature.com/articles/s41592-021-01336-8
scIB github repo: https://github.com/theislab/scib
scib-pipeline github repo: https:/github.com/theislab/scib-pipeline



https://www.nature.com/articles/s41592-021-01336-8

sclB: iLISI & PCA (independent on cell label identity)

Graph iLISI (graph integration local inverse Simpson’s Index):
- “the inverse Simpson’s index is used to determine the number of cells that can be drawn from a
neighbor list before one batch is observed twice”. It is also used for cell-identity, known as cLISI. A value of O corresponds to low batch

integration or cell-type separation.

PCA regression:
- the R-squared of the linear regression between each principal component and the batch variable (covariate) is calculated. The variance
contribution of the batch effect by each PC is calculated as the product of the variance and the R-squared. The sum of the individual variances

gives the total variance explained by the batch variable.

G
Var (C|B) = 3 Var (C[PC;) x R* (PC,|B),

i=l1

Paper: https://www.nature.com/articles/s41592-021-01336-8
scIB github repo: https://github.com/theislab/scib
scib-pipeline github repo: https:/github.com/theislab/scib-pipeline



https://www.nature.com/articles/s41592-021-01336-8

sclB: ARI & NMI (/abel conservation)

ARI (Adjusted Rand Index):
- it compares two clustering results, i.e., cell-labels vs louvain clustering results on the integrated data set, accounting for both, matches

and mismatches. Values of 0 or 1 correspond to a random classification or to a total match.

NMI (Normalized Mutual Information):
- it compares the overlap between cell-type labels with the louvain clustering results on the integrated data set. The overlap is scaled (0-1)

‘using the mean of the entropy terms for cell-type and cluster labels”. A value of 0 means uncorrelated clustering and a value of 1 perfect match.

Paper: https://www.nature.com/articles/s41592-021-01336-8
scIB github repo: https://github.com/theislab/scib
scib-pipeline github repo: https:/github.com/theislab/scib-pipeline



https://www.nature.com/articles/s41592-021-01336-8

