

Turku Bioscience University of Turku and Åbo Akademi University FI-20520 Turku, Finland

Introduction to integration of scRNA-seq data

The Hitchhiker's Guide to scRNA-seq, iMM

09/07/2024

António Sousa - aggode@utu.fi

Outline

- Integration: methods & benchmarks
- Strengths & weaknesses of the different methods
- Strategies to assess integration accuracy
- Integration: *de novo* versus reference-based

BF

Biocenter Finland

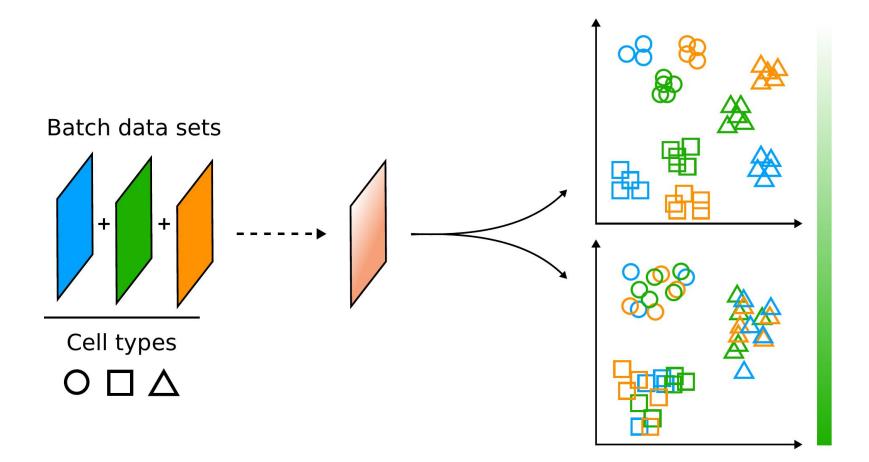
elixír

OF TURKU

TURKU BIOSCIENCE

What is integration?

• Identification of shared cell types/states across heterogeneous scRNA-seq datasets



UNIVERSITY OF TURKU

Æ.

BF Biocenter Finland

elixír

 $\langle \rangle$

INFLAMES

How do we know if integration is required or not?

- Three main approaches (can be combined):
 - Dimensional reduction techniques
 - Automatic cell annotation
 - Independent sample analysis: clustering \rightarrow cluster markers \rightarrow annotation

OF TURKU

BF

Biocenter Finland

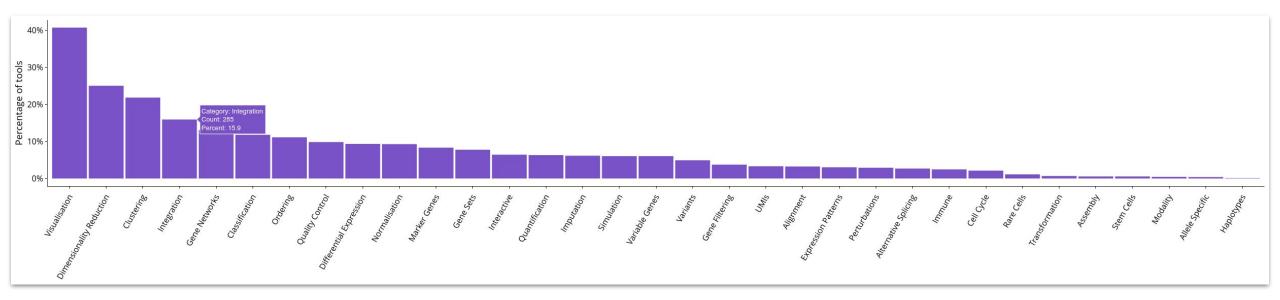
elixír

TURKU BIOSCIENCE

- (cluster comparison between samples)

Biocenter Finland

Overview of integration methods: <u>www.scrna-tools.org</u> (20/06/24)



285 methods/tools!

UNIVERSITY OF TURKU

Æ.

BF

Biocenter Finland

elixír

TURKU BIOSCIENCE

Overview of integration methods: <u>www.scrna-tools.org</u> (20/06/24)

Tools View entries for individual tools		
Sorting & Filters	1. Seurat	CRAN 5.1.0 downloads 65K/month
Sort by Citations	2. Harmony	CRAN 12.0 downloads 6749/mont
Filter by category Select multiple categories and click FILTER below	3. scran	in Bloc 8 years (rank 87/2300
Cell Cycle Classification Clustering Differential Expression	4. scvi-tools	pypi package 1.1.2 downloads/month 2
Dimensionality Reduction Gene Filtering Gene Networks	5. batchelor	in Bioc 5-years frank 99 / 230
Gene Sets Haplotypes Immune	6. RacelD	CRAN 0.3.5 downloads 447/mor
Imputation Integration	7. MIMOSCA	
	8. bseqsc	
	9. MOFA	pypi peckage 1.2 downloads/month
	10. LIGER	CRAN 2.0.1 downloads 1002/mo
	11. scanorama	pypi package 1.7.4 downloads/month
	12. scMC	
	13. bbknn	pypi package 1.6.0 (downloads/month

OF TURKU

BF Biocenter Finland

Abo Akademi

elixir

Seurat

- Shared nearest neighbors in the low dimensional space
- Dimensional reductions: Canonical Correlation Analysis (CCA) or Reciprocal PCA (RPCA)
- Integration or reference-mapping/transfer learning

А

D

UNIVERSITY OF TURKU

Comprehensive Integration of Single-Cell Data

Tim Stuart,^{1,4} Andrew Butler,^{1,2,4} Paul Hoffman,¹ Christoph Hafemeister,¹ Efthymia Papalexi,^{1,2} William M. Mauck III,^{1,2} Yuhan Hao, 1,2 Marlon Stoeckius, 3 Peter Smibert, 3 and Rahul Satija 1,2,5,* ¹New York Genome Center, New York, NY, USA ²Center for Genomics and Systems Biology, New York University, New York, NY, USA ³Technology Innovation Lab, New York Genome Center, New York, NY, USA ⁴These authors contributed equally ⁵Lead Contact *Correspondence: rsatija@nygenome.org https://doi.org/10.1016/j.cell.2019.05.031 С В Reference Reference Identify Canonical Correlation Analysis 'anchors' L2-norm Query Query Е High-scoring correspondence Low-scoring correspondence Anchors are consistent with local neighborhoods. Anchors are inconsistent with local neighborhoods 🛑 🛑 🛑 Cell type Reference Query Reference DOC Query

INFLAMES

 $\langle \rangle$

elixír

BF

https://satijalab.org/seurat

Resource

Harmony

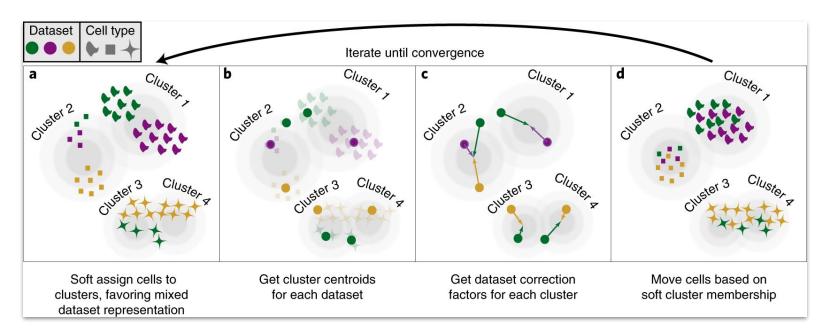
nature methods

BF

elixír

Fast, sensitive and accurate integration of single-cell data with Harmony

Ilya Korsunsky ^[3]^{1,2,3,4}, Nghia Millard^{1,2,3,4}, Jean Fan ^[3]⁵, Kamil Slowikowski^{1,2,3,4}, Fan Zhang ^[3]^{1,2,3,4}, Kevin Wei², Yuriy Baglaenko ^[3]^{1,2,3,4}, Michael Brenner², Po-ru Loh ^[3]^{1,3,4} and Soumya Raychaudhuri ^[3]^{1,2,3,4,6*}

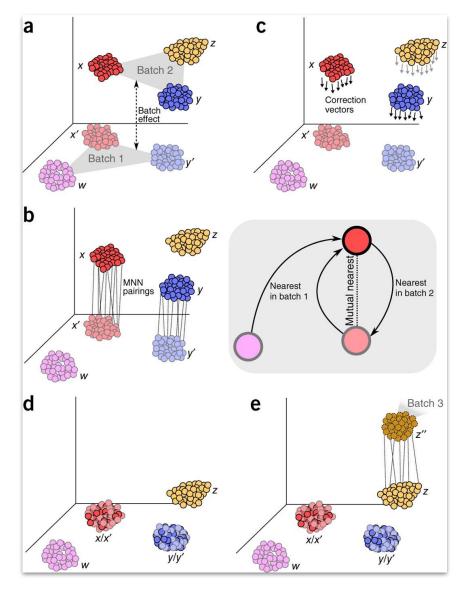


UNIVERSITY OF TURKU

• Approximates dataset-specific cluster centroids to global centroids in the PCA space

https://portals.broadinstitute.org/harmony

fastMNN



nature biotechnology

Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors

Laleh Haghverdi^{1,2}, Aaron T L Lun³, Michael D Morgan⁴ & John C Marioni^{1,3,4}

• Correction vectors applied between mutual nearest neighbors pairs

https://bioconductor.org/packages/devel/bioc/html/batchelor.html

10

BF Biocenter Finland

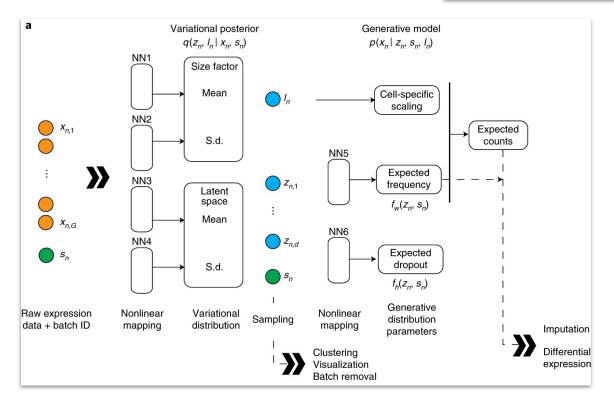
elixír

OF TURKU

Deep generative modeling for single-cell transcriptomics

nature methods

Romain Lopez¹, Jeffrey Regier¹, Michael B. Cole², Michael I. Jordan^{1,3} and Nir Yosef^{1,4,5*}



• "stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects"

Ahoa

UNIVERSITY OF TURKU BF

elixir

 $\langle \rangle$

11

InFLAMES

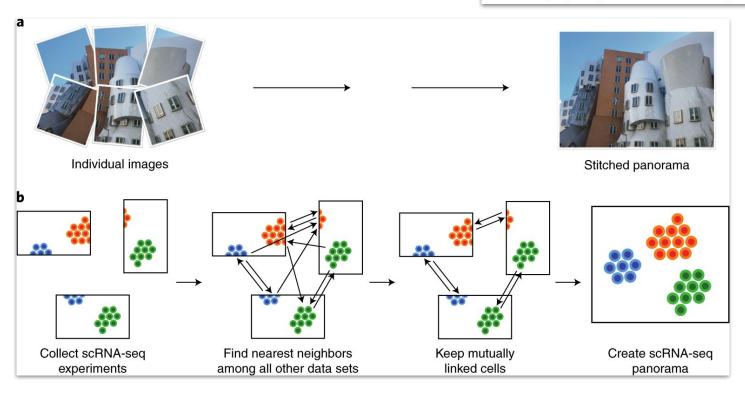
Scanorama

BF

elixir

Efficient integration of heterogeneous single-cell transcriptomes using Scanorama

Brian Hie¹, Bryan Bryson^{2*} and Bonnie Berger^{1,3*}



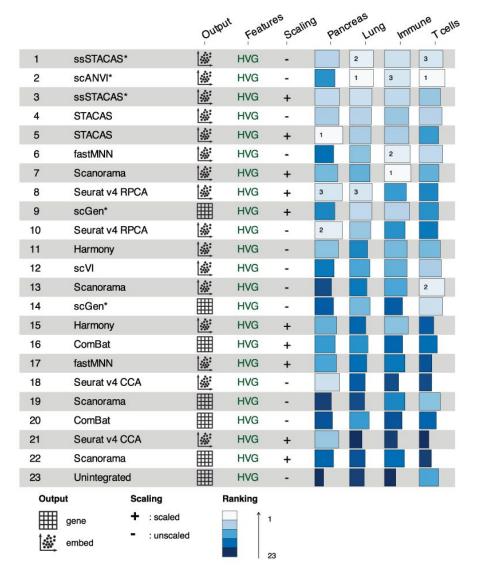
• "Mutually linked cells form matches that can be leveraged to correct for batch effects and merge experiments together, whereby the datasets forming connected components on the basis of these matches become a scRNA-seq 'panorama'"

UNIVERSITY OF TURKU

https://github.com/brianhie/scanorama

Inflames **JURKU** Solution is in Immunity **JURKU**

Semi-supervised integration



nature communications	
-----------------------	--

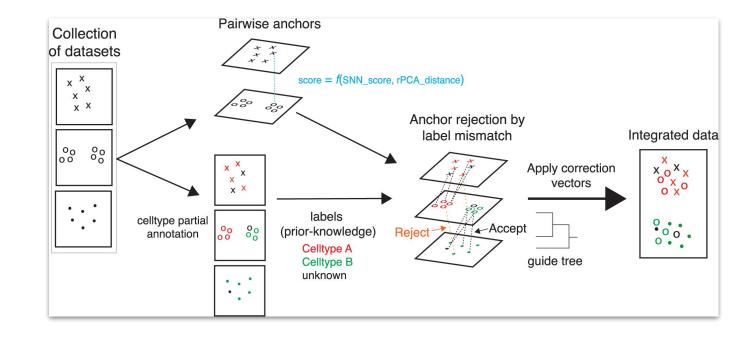
13

Article

https://doi.org/10.1038/s41467-024-45240-z

Semi-supervised integration of single-cell transcriptomics data

Received: 25 July 2023	Massimo Andreatta 12.3, Léonard Hérault 12.3, Paul Gueguen 12.3,
Accepted: 16 January 2024	David Gfeller ^{1,2,3} , Ariel J. Berenstein ⁴ & Santiago J. Carmona ^{1,2,3}



BF

elixír

https://github.com/carmonalab/STACAS

INFLAMES - TURKU Solution is in Immunity BIOSCIENCE

& Medical Bioinformatics Centre

Integration scRNA-seq benchmarks

Tran et al. Genome Biology (2020) 21:12 https://doi.org/10.1186/s13059-019-1850-9

Genome Biology

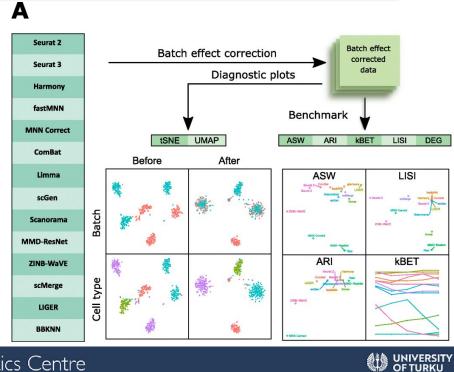
RESEARCH

Open Access

Check for

A benchmark of batch-effect correction methods for single-cell RNA sequencing data

Hoa Thi Nhu Tran[†], Kok Siong Ang[†], Marion Chevrier[†], Xiaomeng Zhang[†], Nicole Yee Shin Lee, Michelle Goh and Jinmiao Chen^{*}[©]



Abstract

Background: Large-scale single-cell transcriptomic datasets generated using different technologies contain batchspecific systematic variations that present a challenge to batch-effect removal and data integration. With continued growth expected in scRNA-seq data, achieving effective batch integration with available computational resources is crucial. Here, we perform an in-depth benchmark study on available batch correction methods to determine the most suitable method for batch-effect removal.

Results: We compare 14 methods in terms of computational runtime, the ability to handle large datasets, and batch-effect correction efficacy while preserving cell type purity. Five scenarios are designed for the study: identical cell types with different technologies, non-identical cell types, multiple batches, big data, and simulated data. Performance is evaluated using four benchmarking metrics including kBET, LISI, ASW, and ARI. We also investigate the use of batch-corrected data to study differential gene expression.

Conclusion: Based on our results, <u>Harmony, LIGER, and Seurat 3 are the recommended methods</u> for batch integration. Due to its significantly shorter runtime, Harmony is recommended as the first method to try, with the other methods as viable alternatives.

InFLAMES

TURKU BIOSCIENCE

Keywords: Single-cell RNA-seq, Batch correction, Batch effect, Integration, Differential gene expression

В

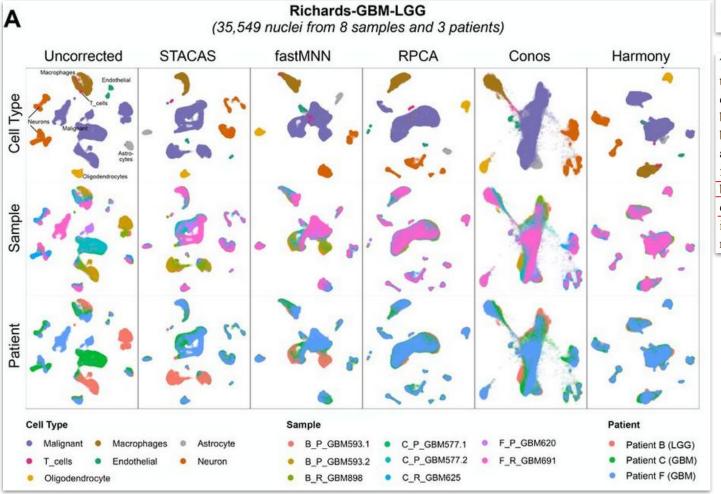
Dataset	Description	Number of batches	Total cell number	Technologies
1	Human Dendritic Cells	2	576	Smart-Seq2
2	Mouse Cell Atlas	2	6,954	Microwell-Sec
2	Wouse Cell Allas	2		Smart-Seq2
3	Simulation	Refer to Simulation table		
4		5	14,767	inDrop
	Human Pancreas			CEL-Seq2
				Smart-Seq2
				SMARTer
				SMARTer
5 Humar	Human Peripheral Blood Mononuclear Cell	2	15,476	10x 3'
				10x 5'
6	Cell line	3	9,530	10x
7	Mouse Retina	2	71,638	Drop-seq
8	Mouse Brain	2	833,206	Drop-seq
				SPLiT-seq
9	Human Cell Atlas	2	621,466	10x
10	Mouse Haematopoietic Stem and Progenitor Cells	2	4,649	MARS-seq
		2		Smart-Seq2

elixír

BF

Medical Bioinformatics Centre

Integration scRNA-seq benchmarks



A comparison of data integration methods for single-cell RNA sequencing of cancer samples

Laura M. Richards^{1,2}, Mazdak Riverin², Suluxan Mohanraj², Shamini Ayyadhury^{2,3}, Danielle C. Croucher^{1,2}, J. Javier Díaz-Mejía², Fiona J. Coutinho⁵, Peter B. Dirks^{4,5,6}, Trevor J. Pugh^{1,2,7, #}

Tumours are routinely profiled with single-cell RNA sequencing (scRNA-seq) to characterize their diverse cellular ecosystems of malignant, immune, and stromal cell types. When combining data from multiple samples or studies, batch-specific technical variation can confound biological signals. However, scRNA-seq batch integration methods are often not designed for, or benchmarked, on datasets containing cancer cells. Here, we compare 5 data integration tools applied to 171,206 cells from 5 tumour scRNA-seq datasets. Based on our results, STACAS and fastMNN are the most suitable methods for integrating tumour datasets, demonstrating robust batch effect correction while preserving relevant biological variability in the malignant compartment. This comparison provides a framework for evaluating how well single-cell integration methods correct for technical variability while preserving biological heterogeneity of malignant and non-malignant cell populations.

BF

UNIVERSITY OF TURKU

BIOSCIENCE

Integration scRNA-seq benchmarks

nature methods

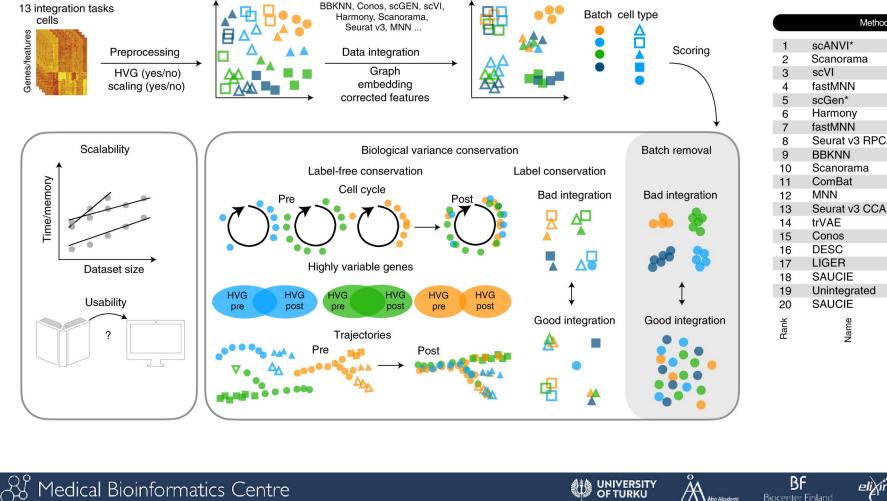
ANALYSIS https://doi.org/10.1038/s41592-021-01336-8

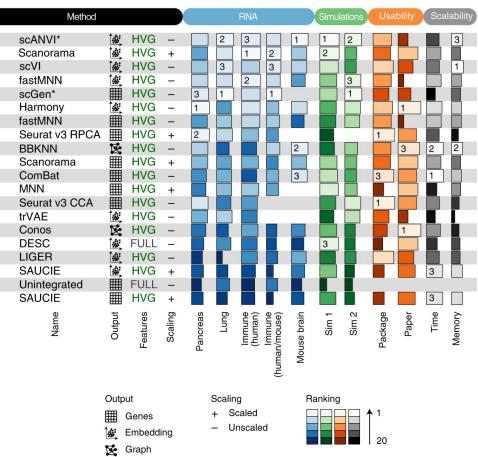
Check for updates

OPEN

Benchmarking atlas-level data integration in single-cell genomics

Malte D. Luecken ¹, M. Büttner ¹, K. Chaichoompu ¹, A. Danese¹, M. Interlandi², M. F. Mueller¹, D. C. Strobl¹, L. Zappia^{1,3}, M. Dugas⁴, M. Colomé-Tatché^{1,5,6} and Fabian J. Theis ^{1,3,5}





InFLAMES

TURKU

BIOSCIENCE

Conclusions: strengths & weaknesses of the different methods

- Integration: trade-off between biological signal preservation and batch correction
- Inconsistent results across benchmarks: different methods, integration tasks, performance metrics
- Benchmarks: showed that performance of integration is inherently dependent on the complexity of the integration task, highlighting that there is no single method fitting all the tasks
- Methods more suitable to correct strong batch effects (prioritize batch correction): Seurat CCA, Harmony and fastMNN
- Methods more suitable to correct mild to moderate batch effects (prioritize biological conservation):
 Seurat RPCA, Scanorama and scVI

UNIVERSITY

elixír

Biocenter Finland

Strategies to assess integration accuracy

- Two types of assessment:
 - qualitative (dimensional reduction visualizations)

UNIVERSITY OF TURKU BF

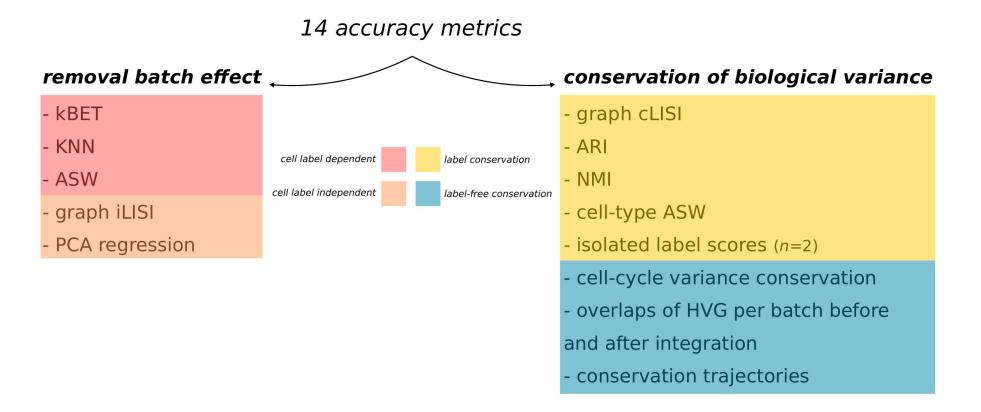
Biocenter Finland

elixír

TURKU BIOSCIENCE

- quantitative (objective metrics)

Measuring integration performance (quantitative): scib package



Input: integrated joint embedding or feature corr. matrix

UNIVERSITY OF TURKU

A

BF

elixír

InFLAMES

Paper: https://www.nature.com/articles/s41592-021-01336-8

sclB github repo: *https://github.com/theislab/scib* scib-pipeline github repo: *https://github.com/theislab/scib-pipeline*

TURKU BIOSCIENCE

Measuring integration performance

Published Online: 23 March, 2021 | Supp Info: http://doi.org/10.26508/lsa.202001004 Downloaded from life-science-alliance.org on 20 June, 2024

Research Article

BF

Biocenter Finland

elizír

Check for updates

CellMixS: quantifying and visualizing batch effects in single-cell RNA-seq data

Almut Lütge^{1,2}, Joanna Zyprych-Walczak³, Urszula Brykczynska Kunzmann⁴, Helena L Crowell^{1,2}, Daniela Calini⁵, Dheeraj Malhotra⁵, Charlotte Soneson^{2,4}, Mark D Robinson^{1,2}

Metric	Level	Basis	Short description	Interpretation	
Cell-specific Mixing Score (cms)	Cell	knn, pca	Test for whether distance distributions from a neighbourhood are batch specific	P-value: Probability to observe as large differences in distance distributions assuming the same underlying distribution	
Local Inverse Simpson Index (lisi)	Cell	knn	Inverse of the sum of batch probabilities within weighted knn	Effective number of batches in neighbourhood	
Entropy	Cell	knn	Sum of the products of the batch probabilities and their log within each cell's knn	Randomness in the data according to the batch variable	
Mixing metric (mm)	Cell	knn	Median position of the fifth cell from each batch within its knn	Number of cells within knn until each batch is represented by five cells	
Graph connectivity (graph)	Cell type	knn- graph	Fraction of directly connected cells within cell type graphs	Proportion of non-distorted cell type relationships	
k-nearest neighbour Batch effect test (kBet)	Cell type	knn	Test for equal batch proportions within a random cell's knn	P-value: Probability to observe as large differences in batch proportions assuming the same underlying proportions	
Average silhouette width (asw)	Cell type	рса	Average relationship of within and between batch-cluster distances for each cell type	Indication of how well clusters are separated	
Principal component regression (pcr)	Global	pca	Correlation of the batch variable with principal components weighted by their variance attributes	Proportion of variance attributed to batch	

UNIVERSITY OF TURKU

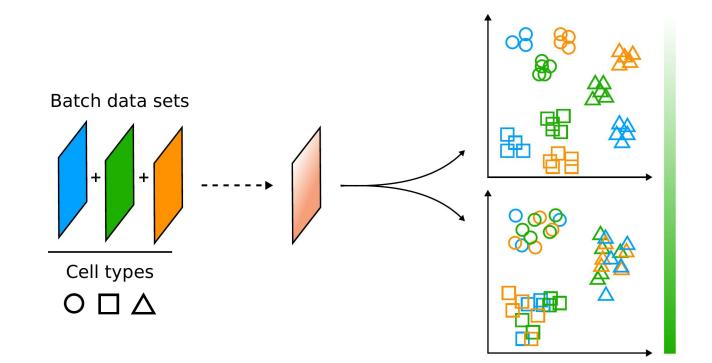
AL

https://github.com/almutlue/CellMixS

INFLAMES - TURKU Solution is in Immunity BIOSCIENCE

Integration (*de novo*) versus reference-mapping

• Integration (*de novo*): integration \rightarrow clustering \rightarrow cluster markers \rightarrow annotation



UNIVERSITY

人

BF

Biocenter Finland

elixír

INFLAMES

TURKU BIOSCIENCE

• Application: newly poorly described single-cell transcriptomic data

Integration (de novo) versus reference-mapping

• **Reference-mapping**: projecting & transferring labels

from a previously annotated reference to a new query data set

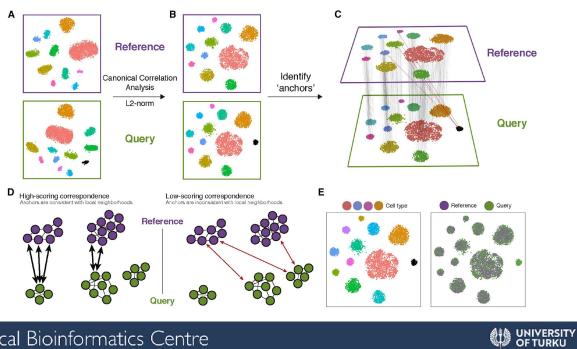
• **Application**: experiments generating single-cell transcriptomic data with well-known identities for which are references available

UNIVERSITY OF TURKU

Reference Mapping Map query Transfer against labels reference **Project query** onto the Reference UMAP 1 22 TURKU BIOSCIENCE InFLAMES

Reference-mapping

Cell Resource Comprehensive Integration of Single-Cell Data Tim Stuart,^{1,4} Andrew Butler,^{1,2,4} Paul Hoffman,¹ Christoph Hafemeister,¹ Efthymia Papalexi,^{1,2} William M. Mauck III,^{1,2} Yuhan Hao, 1,2 Marlon Stoeckius, 3 Peter Smibert, 3 and Rahul Satija 1,2,5,* ¹New York Genome Center, New York, NY, USA ²Center for Genomics and Systems Biology, New York University, New York, NY, USA ³Technology Innovation Lab, New York Genome Center, New York, NY, USA ⁴These authors contributed equally ⁵Lead Contact *Correspondence: rsatija@nygenome.org https://doi.org/10.1016/j.cell.2019.05.031



nature biotechnology

ANALYSIS https://doi.org/10.1038/s41587-021-01001-7

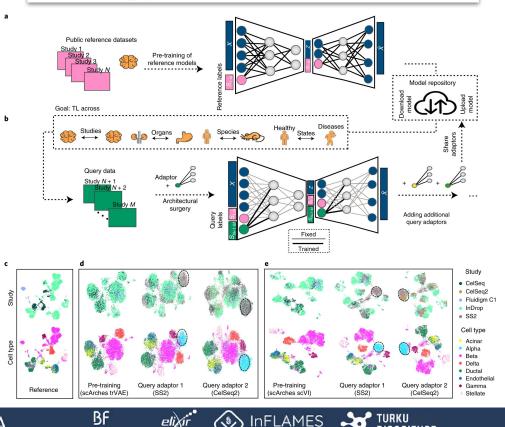
BIOSCIENCE

Check for updates

OPEN

Mapping single-cell data to reference atlases by transfer learning

Mohammad Lotfollahi^{1,2}, Mohsen Naghipourfar¹, Malte D. Luecken¹, Matin Khajavi¹, Maren Büttner 💿 1, Marco Wagenstetter 1, Žiga Avsec 💿 3, Adam Gayoso 💿 4, Nir Yosef 💿 4.5.6.7, Marta Interlandi⁸, Sergei Rybakov^{1,9}, Alexander V. Misharin¹⁰ and Fabian J. Theis^{12,9}



eliXii

Abo Al

& Medical Bioinformatics Centre

Additional resources about integration

• Analysis of single cell RNA-seq data Sanger course:

https://www.singlecellcourse.org/scrna-seq-dataset-integration.html

• Single-cell best practices website:

https://www.sc-best-practices.org/cellular_structure/integration.html

UNIVERSITY

Æ.

BF

Biocenter Finland

elixír

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.: 955321

scIB: kBET, kNN & ASW (dependent on cell label identity)

kBET (k-nearest-neighbor batch effect test):

- compares the batch label distribution of a local neighborhood of a (*k*NN) graph for a subset of a given cell label against the global neighborhood – Pearson's Chi-squared test. Null hypothesis is that the distributions are similar, *i.e.*, batches are well mixed. K-BET result is the average rejection rate. Lower value means no/weak batch effect.

*k*NN (*k*-nearest-neighbor graph connectivity):

- measures if all the cells from a given cell identity label are all connected (1).

ASW (average silhouette width):

$$GC = \frac{1}{|C|} \sum_{c \in C} \frac{|LCC(G(N_c; E_c))|}{|N_c|}$$

- measures the within- and between-cluster distances (to the closest cluster). The average of all widths corresponds to the ASW. The ASW ranges between -1 - 0 - 1 (misclassification - overlapping clusters - well-separated dense clusters). Computed on the integrated embedding (or PCA). Used for assessing batch effects as well as cell label conservation (some differences).

scIB: iLISI & PCA (independent on cell label identity)

Graph iLISI (graph integration local inverse Simpson's Index):

- "the inverse Simpson's index is used to determine the number of cells that can be drawn from a

neighbor list before one batch is observed twice". It is also used for cell-identity, known as cLISI. A value of 0 corresponds to low batch integration or cell-type separation.

PCA regression:

- the *R*-squared of the linear regression between each principal component and the batch variable (covariate) is calculated. The variance contribution of the batch effect by each PC is calculated as the product of the variance and the *R*-squared. The sum of the individual variances gives the total variance explained by the batch variable.

$$\operatorname{Var}\left(C|B\right) = \sum_{i=1}^{G} \operatorname{Var}\left(C|\operatorname{PC}_{i}\right) \times R^{2}\left(\operatorname{PC}_{i}|B\right),$$

scIB: ARI & NMI (label conservation)

ARI (Adjusted Rand Index):

- it compares two clustering results, i.e., cell-labels vs louvain clustering results on the integrated data set, accounting for both, matches and mismatches. Values of 0 or 1 correspond to a random classification or to a total match.

NMI (Normalized Mutual Information):

- it compares the overlap between cell-type labels with the louvain clustering results on the integrated data set. The overlap is scaled (0-1) *"using the mean of the entropy terms for cell-type and cluster labels".* A value of 0 means uncorrelated clustering and a value of 1 perfect match.